

NATIONAL WEATHER SERVICE

New guidance products of the Nearshore Wave Prediction System v1.3

APRIL 29, 2021

Andre van der Westhuysen, Jian Kuang, Roberto Padilla; Michael Churma, Jung-Sun Im (MDL); Greg Dusek (NOS); Kara Doran, Margaret Palmsten (USGS); Pablo Santos (WFO MFL); Darren Wright, John F Kuhn (AFS).

Outline

Scope of changes in NWPS v1.3 (Feb 3, 2021)

Unstructured mesh transition

Wave system identification

Hazardous rip current

Wave runup guidance (erosion/overwash)

Conclusions and Outlook

NWPS On-demand Domains (36 WFOs)

Scope of changes in NWPS v1.3 (NWS, 2021)

1. Transition 12 WFO domains from regular to unstructured grids.

Wave system identification using ML methods (K-means clustering).
 Resolved low-frequency limit lowered to 0.035 Hz.

3. Include hourly rip current guidance out to 6 days

4. Include hourly wave runup (erosion/overwash) guidance out to 6 days.

5. Improve blending of P-Surge and ESTOFS water level inputs.

6. Transect output graphics.

ž

1. Unstructured Mesh Transition

ž

2. Wave system identification

Swell 1 Swell 2 Swell 3 Windsea

Tracy et al. (2007)

Credit: Michel Griffon, Wikipedia (no edits)

Creative Commons Attribution 3.0 Unported license

ž

Cluster Analysis (k-means clustering)

**

**>

Wave systems: WFO Honolulu example

k-means clustering in parameter space

k-means clustering geographical space

(Van der Westhuysen, 2020)

3. Hazardous Rip Current Forecasting

NWPS Probabilistic Rip Current guidance

Rip Current Guidance with Logistic Regression (Dusek & Seim, 2013)

K\$

WFO Morehead City model mesh

 $g(x) = 1.05 + 3.51 \ln(Hs) - 0.027 |\theta| + 0.42 \text{Ep} - 1.70 \eta$

쏦

Rip Current Guidance in NWPS

Rip Current Validation

K\$

Rip Current Validation: ER example

Brier Skill Scores

Weather Forecast Office	Model vs Sample Climate	Model vs traditional Rip Index
Boston/Norton, MA (BOX)	+23.5%	NA
New York, NY (OKX)	-25.8%	NA
Wakefield, VA (AKQ)	+32.4%	NA
Morehead City, NC (MHX)	+45.3%	+35.8%
Charleston, SC (CHS)	-19.3%	NA

*>

Future improvements with MDL RCMOS

- The NWPS v1.3 rip current model is not calibrated with regard to either regional or seasonal variations.
- The model is a "perfect prog" model, i.e., no corrections made for systematic biases of the **NWPS** model output (input to this model).
- MDL has developed new regional and seasonal **MOS logistic regression** model using lifeguard obs and NWPS forecast data (Im et al., 2019, 2021).
- Future versions of the NWPS rip model can be calibrated locally with **RCMOS** equations.

Future Model vs Sample Climate (current model)

12.2%

(7.4%)

26.8%

(3.7%)

Cool season:

Model vs traditional approach or SRF (current model)

Future

Warm season: Warm season: 32.3% (27.1%) Cool season: 15.7% (-8.8%)

Current model

(Im et al., 2019)

4. Wave runup guidance (Stockdon et al. 2006)

$$R_2 = \text{Setup} + \text{Swash}/2$$

$$= 1.1 \left(0.35 \beta_f (H_0 L_0)^{1/2} + \frac{[H_0 L_0 (0.563 \beta_f^2 + 0.004)]^{1/2}}{2} \right)$$

Gridded runup guidance (e.g. WFO Tampa)

Wave Runup Validation: Experimental Site

Tidal range = 0.8 m

Wave Runup: Image processing and validation

- Camera calibrated
- Video down-sampled to a cross-shore transect
- Wave swash edge is digitized and projected into real-world coordinates
- Observed elevation of TWL compared to forecast

Wave Runup: Forecast validation (2017/01-2020/06)

Bias = -0.24 m, RMSE = 0.34 m, $R^2 = 0.38$

Conclusions and Outlook

- 1. NWPS v1.3 features new and improved guidance on wave systems, hazardous rip currents and erosion/overwash.
- 2. The rip current model performed well at most locations, but not all:
 - In NWPS v1.3, a single equation from the North Carolina "perfect prog model" has been applied to all WFOs, without local tuning.
 - No bias correction has been applied to inputs.
 - Model coefficients can be fit locally and seasonally (Im et al., 2019).
 - Different and additional sets of predictors to be investigated.
 - Quality of observations can be improved.
- 3. The wave runup model performed well at single long-term monitoring station. Future enhancements include:
 - Expand validation by adding remote sensing stations to more locations.
 - Introduce additional expressions for different shore types (e.g. rubble mound).

*

References

Im, J.-S., S. Smith, M. Churma, J. Ghirardelli, G. Dusek, 2021. Rip Current Model Output Statistics (RCMOS) Modeling for Real-Time Probabilistic and Deterministic Forecasts, 19th Symposium on the Coastal Environment, 2021 AMS Annual Meeting, Boston, MA.

NWS, 2021. SCN20-116 Updated: The Nearshore Wave Prediction System (NWPS) Update v1.3 Effective on or about February 3, 2021. https://www.weather.gov/media/notification/pdf2/scn20-116nwps_v1_3aab.pdf.

Stockdon, H. F., R. A. Holman, P. A. Howd, A. H. Sallenger, 2006. Empirical parameterization of setup, swash, and runup. Coastal Engineering, Volume 53, Issue 7, 573-588.

Van der Westhuysen, A.J., 2020. Tracking of Wind-Wave Systems Using K-Means Clustering. AMS Annual Meeting, Boston, MA.
https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper370887/VanDerWesthuysen_AMS2020_ext_abstr_paper10-4.pdf

